Affinity purified from pooled serum. Learn more.

GluR1 (Ser845) Antibody

Catalog #: p1160-845 Category: Datasheet:


Rabbit polyclonal antibody

Pooled Serum
150 µl
Affinity Purified from Pooled Serum
Rat, Mouse, Human, Non-human primate
WB 1:1,000IHC 1:1,000
Gene Name:
Molecular Reference:
~100 kDa
Cite This Antibody:
PhosphoSolutions Cat# p1160-845, RRID:AB_2492128
Antigen/Purification: ExpandCollapse

The antigen is a phosphopeptide corresponding to amino acid residues surrounding the phospho-Ser845 of GluR1.

The antibody is prepared from pooled rabbit serum by affinity purification via sequential chromatography on phospho- and dephospho-peptide affinity columns.

Biological Significance: ExpandCollapse

The ion channels activated by glutamate are typically divided into two classes. Those that are sensitive to N-methyl-D-aspartate (NMDA) are designated NMDA receptors (NMDAR) while those activated by α-amino-3-hydroxy-5-methyl-4-isoxalone propionic acid (AMPA) are known as AMPA receptors (AMPAR). The AMPAR are comprised of four distinct glutamate receptor subunits designated (GluR1-4) and they play key roles in virtually all excitatory neurotransmission in the brain (Keinänen et al., 1990; Hollmann and Heinemann, 1994). The GluR1 subunit is widely expressed throughout the nervous system. Phosphorylation of Ser845 on GluR1 is thought to be mediated by PKA and phosphorylation of this site increases the conductance of the AMPAR (Roche et al., 1996; Banke et al., 2000). In addition, phosphorylation of this site has been linked to synaptic plasticity as well as learning and memory (Lee at al., 2003; Esteban at al., 2003).


100 µl in 10 mM HEPES (pH 7.5), 150 mM NaCl, 100 µg BSA per ml and 50% glycerol. Adequate amount of material to conduct 10-mini Western Blots.

For long term storage –20° C is recommended. Stable at –20° C for at least 1 year.

Product Specific References

Mao, L.M., He, N., Jin, D.Z. and Wang, J.Q., 2018. Regulation of Phosphorylation of AMPA Glutamate Receptors by Muscarinic M4 Receptors in the Striatum In vivo. Neuroscience, 375, pp.84-93. PMID: 29432883

Suzuki, K., Harada, A., Suzuki, H., Capuani, C., Ugolini, A., Corsi, M. and Kimura, H., 2018. Combined treatment with a selective PDE10A inhibitor TAK‐063 and either haloperidol or olanzapine at subeffective doses produces potent antipsychotic‐like effects without affecting plasma prolactin levels and cataleptic responses in rodents. Pharmacology Research & Perspectives, 6(1). PMID: 29417763

Xue, B., Mao, L.M., Jin, D.Z. and Wang, J.Q., 2017. Pharmacological modulation of AMPA receptor phosphorylation by dopamine and muscarinic receptor agents in the rat medial prefrontal cortex. European journal of pharmacology. 2017 Dec 11;820:45-52. PMID: 29242119

Tronci, E., Napolitano, F., Muñoz, A., Fidalgo, C., Rossi, F., Björklund, A., Usiello, A. and Carta, M., 2017. BDNF over-expression induces striatal serotonin fiber sprouting and increases the susceptibility to l-DOPA-induced dyskinesia in 6-OHDA-lesioned rats. Experimental Neurology. Nov;297:73-81. PMID: 28757258

Musante, V., Li, L., Kanyo, J., Lam, T.T., Colangelo, C.M., Cheng, S.K., Brody, A.H., Greengard, P., Le Novere, N. and Nairn, A.C., 2017. Reciprocal regulation of ARPP-16 by PKA and MAST3 kinases provides a cAMP-regulated switch in protein phosphatase 2A inhibition. Elife, 6, p.e24998. PMID: 28613156

Lameth, J., Gervais, A., Colin, C., Lévêque, P., Jay, T.M., Edeline, J.M. and Mallat, M., 2017. Acute Neuroinflammation Promotes Cell Responses to 1800 MHz GSM Electromagnetic Fields in the Rat Cerebral Cortex. Neurotoxicity Research, pp.1-16. PMID: 28578480

Andrade, E.C., Musante, V., Horiuchi, A., Matsuzaki, H., Brody, A.H., Wu, T., Greengard, P., Taylor, J.R. and Nairn, A.C., 2017. ARPP-16 is a striatal-enriched inhibitor of protein phosphatase 2A regulated by microtubule-associated serine/threonine kinase 3 (Mast 3 kinase). Journal of Neuroscience, pp.4559-15. PMID: 28167675

Hollis, F., Sevelinges, Y., Grosse, J., Zanoletti, O. and Sandi, C., 2016. Involvement of CRFR1 in the basolateral amygdala in the immediate fear extinction deficit. eNeuro, 3(5). PMID: 27844053

O’Leary, H., Bernard, P. B., Castano, A. M., & Benke, T. A. (2016). Enhanced long term potentiation and decreased AMPA receptor desensitization in the acute period following a single kainate induced early life seizure. Neurobiology of disease, 87, 134-144.  PMID: 26706598

Xue, B., Chen, E. C., He, N., Jin, D. Z., Mao, L. M., & Wang, J. Q. (2016). Integrated regulation of AMPA glutamate receptor phosphorylation in the striatum by dopamine and acetylcholine. Neuropharmacology. PMID: 27060412

Xue, B., Fitzgerald, C. A., Jin, D. Z., Mao, L. M., & Wang, J. Q. (2016). Amphetamine elevates phosphorylation of eukaryotic initiation factor 2α (eIF2α) in the rat forebrain via activating dopamine D1 and D2 receptors. Brain Research. PMID: 27338925

Ip, F. C., Fu, W. Y., Cheng, E. Y., Tong, E. P., Lok, K. C., Liang, Y., Ye, W.C. & Ip, N. Y. (2015). Anemoside A3 Enhances Cognition through the Regulation of Synaptic Function and Neuroprotection. Neuropsychopharmacology, 40, 1877–1887. PMID: 25649278

Mao, L. M., Xue, B., Jin, D. Z., & Wang, J. Q. (2015). Dynamic increases in AMPA receptor phosphorylation in the rat hippocampus in response to amphetamine. Journal of neurochemistry. Jun;133(6):795-805. Suzuki K, Harada A, Shiraishi E, Kimura H. (2015) In Vivo Pharmacological Characterization of TAK-063, a Potent and Selective Phosphodiesterase 10A Inhibitor with Antipsychotic-Like Activity in Rodents. JPET, 352:471-479.  PMID: 25689263

Tassin, T. C., Benavides, D. R., Plattner, F., Nishi, A., & Bibb, J. A. (2015). Regulation of ERK Kinase by MEK1 Kinase Inhibition in the Brain. Journal of Biological Chemistry, Jun 26;290(26):16319-29. PMID: 25971971

Mao, L. M., Hastings, J. M., Fibuch, E. E., & Wang, J. Q. (2014). Propofol selectively alters GluA1 AMPA receptor phosphorylation in the hippocampus but not prefrontal cortex in young and aged mice. European journal of pharmacology, 738, 237-244.  PMID: 24907515

Meyer, D. A., Torres-Altoro, M. I., Tan, Z., Tozzi, A., Di Filippo, M., DiNapoli, V., Plattner, F., Kansy, J.W., Benkovic, S.A., Huber, J.D., Miller, D.B., Greengard, P., Calabresi, P., Rosen, C.L., & Bibb, J. A. (2014). Ischemic stroke injury is mediated by aberrant Cdk5. The Journal of Neuroscience, 34(24), 8259-8267. PMID: 24920629

Wang, J., Zhang, Y., Xu, H., Zhu, S., Wang, H., He, J., Zhang, H., Guo, H., Kong, J., Huang, Q., & Li, X. M. (2014). Fluoxetine Improves Behavioral Performance by Suppressing the Production of Soluble β-Amyloid in APP/PS1 Mice. Current Alzheimer Research, 11(7), 672-680. PMID: 25115542

Xue, B., Edwards, M. C., Mao, L. M., Guo, M. L., Jin, D. Z., Fibuch, E. E., & Wang, J. Q. (2014). Rapid and sustained GluA1 S845 phosphorylation in synaptic and extrasynaptic locations in the rat forebrain following amphetamine administration. Neurochemistry international, 64, 48-54. PMID: 24231469

Bernard, P. B., Castano, A. M., Bayer, K. U., & Benke, T. A. (2014). Necessary, but not sufficient: insights into the mechanisms of mGluR mediated long-term depression from a rat model of early life seizures. Neuropharmacology, 84, 1-12. PMID: 24780380

Shen Y, Fu WY, Cheng EY, Fu AK, and Ip NY (2013) Melanocortin-4 receptor regulates hippocampal synaptic plasticity through a protein kinase A-dependent mechanism. J Neurosci. 33(2):464-72. PMID: 23303927

Santini E, Feyder M, Gangarossa G, Bateup HS, Greengard P, Fisone G. (2012) Dopamine- and cAMP-regulated phosphoprotein of 32-kDa (DARPP-32)-dependent activation of extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin complex 1 (mTORC1) signaling in experimental parkinsonism. J Biol Chem. 287(33):27806-12.  PMID: 22753408

Robert M. Sears, Rong-Jian Liu, Nandakumar S. Narayanan, Ruth Sharf, Mark F. Yeckel, Mark Laubach, George K. Aghajanian, and Ralph J. DiLeone (2010) Regulation of Nucleus Accumbens Activity by the Hypothalamic Neuropeptide Melanin-Concentrating Hormone. J. Neurosci., 30: 8263 – 8273. PMID: 20554878

Emanuela Santini, Myriam Heiman, Paul Greengard, Emmanuel Valjent, and Gilberto Fisone (2009) Inhibition of mTOR Signaling in Parkinson’s Disease Prevents L-DOPA–Induced Dyskinesia. Sci. Signal., Jul 2009; 2: ra36. PMID: 19622833

Heike Rebholz, Akinori Nishi, Sabine Liebscher, Angus C. Nairn, Marc Flajolet, and Paul Greengard (2009) CK2 negatively regulates G s signaling. PNAS, 106: 14096 – 14101. PMID: 19666609

Zhaoqing Zheng and Joyce Keifer (2009) PKA Has a Critical Role in Synaptic Delivery of GluR1- and GluR4- Containing AMPARs During Initial Stages of Acquisition of In Vitro Classical Conditioning. J Neurophysiol, 101: 2539 – 2549. PMID: 19261706

Kurtis D. Davies, Susan M. Goebel-Goody, Steven J. Coultrap, and Michael D. Browning (2008) Long Term Synaptic Depression That Is Associated with GluR1 Dephosphorylation but Not -Amino-3-hydroxy-5-methyl-4- isoxazolepropionic Acid (AMPA) Receptor Internalization. J. Biol. Chem., 283: 33138 – 33146. PMID: 18819923

Douglas A. Meyer, Edmond Richer, Stanley A. Benkovic, Kanehiro Hayashi, Janice W. Kansy, Carly F. Hale, Lily Y. Moy, Yong Kim, James P. O’Callaghan, Li-Huei Tsai, Paul Greengard, Angus C. Nairn, Christopher W. Cowan, Diane B. Miller, Pietro Antich, and James A. Bibb (2008) Striatal dysregulation of Cdk5 alters locomotor responses to cocaine, motor learning, and dendritic morphology. PNAS, 105: 18561 – 18566. PMID: 19017804

Akinori Nishi, Mahomi Kuroiwa, Diane B. Miller, James P. O’Callaghan, Helen S. Bateup, Takahide Shuto, Naoki Sotogaku, Takaichi Fukuda, Nathaniel Heintz, Paul Greengard, and Gretchen L. Snyder (2008) Distinct Roles of PDE4 and PDE10A in the Regulation of cAMP/PKA Signaling in the Striatum. J. Neurosci., 28: 10460 – 10471. PMID: 18923023

Sun X, Milovanovic M, Zhao Y, Wolf ME. (2008) Acute and chronic dopamine receptor stimulation modulates AMPA receptor trafficking in nucleus accumbens neurons cocultured with prefrontal cortex neurons. J Neurosci. Apr 16;28(16):4216-30. PMID: 18417701

GluR1 ser845 Antibody
Western blot of rat hippocampal lysate showing specific immunolabeling of the ~100 kDa GluR1 protein phosphorylated at Ser845 in the first lane (-). Phosphospecificity is shown in the second lane (+) where immunolabeling is completely eliminated by blot treatment with lambda phosphatase (λ-Ptase, 1200 units for 30 min).

You may also like…